Advanced Topics in Probability - Lecture 12

Lecturer: Prof. Ron Peled, Scribe: Roey Zemmel

29 Dec, 2021

Continuing Long-Range Order for Spin $O(n)$ models in $d \geq 3$ at low temperatures

Let L be an even number. Denote $\Lambda:=\Lambda_{L}=\left\{-\frac{L}{2}+1, \ldots \frac{L}{2}\right\}^{d}$ the d-dimensional discrete torus of side length L, and define the Shifted Partition Function as:

$$
Z(f)=\int_{\Omega_{\Lambda}} \exp \left(-\beta \sum_{\substack{u \sim v \\ u, v \in V}}\left\|\sigma_{u}-\sigma_{v}+f_{u} e_{1}-f_{v} e_{1}\right\|_{2}^{2}\right) \mathrm{d} \sigma
$$

where $\Omega_{\Lambda}=\left\{\sigma: \Lambda \rightarrow S^{n-1}\right\}, f: \Lambda \rightarrow \mathbb{R}$, and where $\mathrm{d} \sigma=\prod_{v \in \Lambda} \mathrm{~d} m\left(\sigma_{v}\right)$, and m is the Lebesgue measure on S^{n-1}.
Definition. Gaussian Domination (GD) is said to occur if and only if for all $f: \Lambda \rightarrow \mathbb{R}, Z(0) \geq Z(f)$.
We will prove GD for Ω_{Λ} using reflection positivity. Open problem: find robust proofs for GD that will work in other domains.

Reflection Positivity

Let Λ_{0}, Λ_{1} be the two halves of Λ, split at the first coordinate. Let $R: \Lambda \rightarrow \Lambda$ be the reflection mapping Λ_{0} to Λ_{1} and vice versa, i.e. $R\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\left(1-x_{1}, x_{2}, \ldots, x_{d}\right)$, and for functions $f: \Lambda_{0} \rightarrow \mathbb{R}$ define $(R f)(x)=f(R x)$, and similarly for $f: \Lambda_{1} \rightarrow \mathbb{R}$. For $f: \Lambda \rightarrow \mathbb{R}$, define $f_{0}=f \upharpoonright_{\Lambda_{0}}$ and $f_{1}=f \upharpoonright_{\Lambda_{1}}$, and write $Z(f)=Z\left(f_{0}, f_{1}\right)$.
Definition. Z is said to be reflection positive if for all f_{0}, f_{1} as above:

$$
Z\left(f_{0}, f_{1}\right) \leq \sqrt{Z\left(f_{0}, R f_{0}\right) Z\left(R f_{1}, f_{1}\right)}
$$

Proposition. [Reflection positivity] Z is reflection positive.
Remark. Reflection positivity is a more general technique, sometimes used with cuts going through vertices instead of edges, whose main consequences are:

- The infra-red bound
- The chessboard estimate
(See lecture notes of Peled-Spinka/Biskup).

Proof of Gaussian Domination from Proposition

Proof. First, note that if the difference in f along an edge is large, then $Z(f)$ will be small. Thus, maximizers of $Z(\cdot)$ exist, since one can look for them in a compact set (noting that $Z(f+c)=Z(f)$ for constant c). Let \bar{f} be a maximizer of Z, which also minimizes $k(f):=\#\left\{\{u, v\} \in E \mid f_{u} \neq f_{v}\right\}$. We wish to show that $k(\bar{f})=0$. Indeed, suppose $k \geq 1$, and let $e=\{u, v\}$ be an edge such that $\bar{f}_{u} \neq \bar{f}_{v}$. By rotating and translating, one may assume that e connects Λ_{0} and Λ_{1}. Now by the proposition:

$$
Z\left(\bar{f}_{0}, \bar{f}_{1}\right) \leq \sqrt{Z\left(\bar{f}_{0}, R \bar{f}_{0}\right) Z\left(R \bar{f}_{1}, \bar{f}_{1}\right)} .
$$

Thus, since \bar{f} is a maximizer of Z, so are $\left(\bar{f}_{0}, R \bar{f}_{0}\right),\left(R \bar{f}_{1}, \bar{f}_{1}\right)$. Now, note that $\frac{1}{2}\left(k\left(\bar{f}_{0}, R \bar{f}_{0}\right)+k\left(R \bar{f}_{1}, \bar{f}_{1}\right)\right)<$ $k\left(\bar{f}_{0}, \bar{f}_{1}\right)$, since on the boundaries between Λ_{0}, Λ_{1}, both $\left(\bar{f}_{0}, R \bar{f}_{0}\right)$ and $\left(R \bar{f}_{1}, \bar{f}_{1}\right)$ agree. So one of $k\left(\bar{f}_{0}, R \bar{f}_{0}\right), k\left(R \bar{f}_{1}, \bar{f}_{1}\right)$ is smaller than $k(f)$, and thus \bar{f} is not the minimal maximizer.

Proof of Reflection Positivity

Proof. Two tricks will be used here:

1. The first trick has several names:

- Fourier transform of the Gaussian distribution
- Habbard-Stratonovich transformation
- Introduce a complex field to decouple the interaction

$$
\forall a \in \mathbb{R} . \exp \left(-\frac{1}{2} a^{2}\right)=\int_{-\infty}^{\infty} \overbrace{\frac{\mathrm{d} \xi}{\sqrt{2 \pi}} e^{-\frac{1}{2} \xi^{2}}}^{\text {non-negative measure }} \overbrace{e^{i \xi a}}^{\text {Linear in } a} .
$$

2. Cauchy-Schwarz inequality.

Then, letting $f=\left(f_{0}, f_{1}\right)$,
$Z\left(f_{0}, f_{1}\right)=\int_{\prod_{\substack{u \sim v \\ \Omega_{\Lambda} \\ u, v \in \Lambda_{0}}} e^{-\beta\left\|\sigma_{u}-\sigma_{v}+f_{u} e_{1}-f_{v} e_{1}\right\|_{2}^{2}}}^{\overbrace{\substack{u \sim v \\ u, v \in \Lambda_{1}}}^{h_{0}} e^{-\beta\left\|\sigma_{u}-\sigma_{v}+f_{u} e_{1}-f_{v} e_{1}\right\|_{2}^{2}}} \overbrace{\prod_{\substack{u \sim v \\ u \in \Lambda_{0}, v \in \Lambda_{1}}}^{h_{1}} e^{-\beta\left\|\sigma_{u}-\sigma_{v}+f_{u} e_{1}-f_{v} e_{1}\right\|_{2}^{2}}}^{\text {cut edges } \sigma .}$
Using trick \#1 in the cut edges:

$$
\begin{aligned}
&=\int_{\Omega_{\Lambda}} \mathrm{d} \sigma h_{0} h_{1} \prod_{\substack{u \sim v \\
u \in \Lambda_{0}, v \in \Lambda_{1}}} \prod_{j=1}^{n} \int_{-\infty}^{\infty} \frac{\mathrm{d} \xi_{u, v}^{j}}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(\xi_{u, v}^{j}\right)^{2}} e^{i \xi_{u, v}^{j} \sqrt{2 \beta}\left(\sigma_{u, j}-\sigma_{v, j}+f_{u} e_{1, j}-f_{v} e_{1, j}\right)} \\
&=\int d \mu(\xi) \int_{\Omega_{\Lambda_{0}}} h_{0} \prod_{u \text { on } \Lambda_{0} \text { 's boundary }} e^{i \xi_{u, v}^{j} \sqrt{2 \beta}\left(\sigma_{u, j}+f_{u} e_{1, j}\right)} \mathrm{d} \sigma_{0} \int_{\Omega_{\Lambda_{1}}} h_{1} \prod_{v \text { on } \Lambda_{1} \text { 's boundary }} e^{-i \xi_{u, v}^{j} \sqrt{2 \beta}\left(\sigma_{v, j}+f_{v} e_{1, j}\right)} \mathrm{d} \sigma_{1}
\end{aligned}
$$

where

$$
\mathrm{d} \mu(\xi)=\prod_{\substack{u \sim v \\ u \in \Lambda_{0}, v \in \Lambda_{1}}} \prod_{j=1}^{n} \frac{\mathrm{~d} \xi_{u, v}^{j}}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(\xi_{u, v}^{j}\right)^{2}}
$$

is a non-negative measure. Using Cauchy-Schwarz:

$$
Z\left(f_{0}, f_{1}\right) \leq
$$

$$
\sqrt{\int d \mu(\xi)\left|\int_{\Omega_{\Lambda_{0}}} h_{0} \prod_{u \text { on } \Lambda_{0} \text { 's boundary }} e^{i \xi_{u, v}^{j} \sqrt{2 \beta}\left(\sigma_{u, j}+f_{u} e_{1, j}\right)} \mathbf{d} \sigma_{0}\right|^{2} \sqrt{\int d \mu(\xi) \int_{\Omega_{\Lambda_{1}}}\left|h_{v} \prod_{v \text { on } \Lambda_{1} \text { 's boundary }} e^{-i \xi_{u, v}^{j} \sqrt{2 \beta}\left(\sigma_{v, j}+f_{v} e_{1, j}\right)} \mathbf{d} \sigma_{1}\right|^{2}}}
$$

And now, remember that $|z|^{2}=z \bar{z}$, and

$$
\int_{\Omega_{\Lambda_{0}}} h_{0} \prod_{u \text { on } \Lambda_{0}^{\prime} \text { s boundary }} e^{i \xi_{u, v}^{j} \sqrt{2 \beta}\left(\sigma_{u, j}+f_{u} e_{1, j}\right)} \mathbf{d} \sigma_{0}=\int_{\Omega_{\Lambda_{1}}} h_{0}\left(R f_{0}\right) \prod_{v \text { on } \Lambda_{1}^{\prime} \text { s boundary }} e^{-i \xi_{u, v}^{j} \sqrt{2 \beta}\left(\sigma_{v, j}+(R f)_{v} e_{1, j}\right)} \mathbf{d} \sigma_{1}
$$

as a reflection, and similarly for f_{1}, and so $Z\left(f_{0}, f_{1}\right) \leq \sqrt{Z\left(f_{0}, R f_{0}\right) Z\left(R f_{1}, f_{1}\right)}$.

Disordered Spin Systems

Lattice spin systems in a random environment.

Examples

1. Random-Field Ising Model (RFIM): $\sigma: \Lambda \rightarrow\{-1,1\}$,

$$
H(\sigma)=H^{\eta}(\sigma):=-\sum_{u \sim v} \sigma_{u} \sigma_{v}-\lambda \sum_{v} \eta_{v} \sigma_{v}
$$

where $\lambda>0$ is a parameter governing the strength of the disorder, $\left(\eta_{v}\right)_{v \in \mathbb{Z}^{d}} \operatorname{IID}, \mathbb{E} \eta_{0}=0, \operatorname{Var}\left(\eta_{0}\right)=1$. E.g., $\left(\eta_{v}\right)$ are IID $\mathcal{N}(0,1)$ or IID $\frac{\delta_{1}+\delta_{-1}}{2} . \eta$ is the environment. For each fixed value of η, we have an Ising model, with "apriori tendencies" of the spins to follow the signs of η and with λ controlling the relative strength of the neighbours' effect vs. the apriori tendency. λ is called the "disorder strength".
2. Random-Field Potts Model (RFPM) with q states: $\sigma: \Lambda \rightarrow\{1, \ldots, q\}$,

$$
H(\sigma)=-\sum_{u \sim v} \mathbb{1}_{\sigma_{u}=\sigma_{v}}-\lambda \sum_{v} \sum_{j=1}^{q} \eta_{v, j} \mathbb{1}_{\sigma_{v}=j}
$$

where $\eta: \mathbb{Z}^{d} \times\{1, \ldots, q\} \rightarrow \mathbb{R}$ IID as before.
3. Random-Field Spin $O(n)$ model, $n \geq 2: \sigma: \Lambda \rightarrow S^{n-1}$

$$
H(\sigma)=-\sum_{u \sim v} \sigma_{u} \cdot \sigma_{v}-\lambda \sum_{v} \eta_{v} \cdot \sigma_{v}
$$

η IID taking values in \mathbb{R}^{n}, e.g. $\mathcal{N}\left(0, I_{n}\right)$. We write \cdot for standard inner product in \mathbb{R}^{n}.
4. Disordered Ferromagnet and Edwards-Anderson Spin Glasses: $\sigma: \mathbb{Z}^{d} \rightarrow\{-1,1\}$

$$
H(\sigma)=-\sum_{u \sim v} \eta_{u, v} \sigma_{u} \sigma_{v}
$$

$\eta_{u, v}$ IID.

- Disordered Ferromagnet: $\eta \geq 0$.
- Spin Glasses: η is both positive and negative.

In all the examples above, form a probability measure in a finite volume Λ with boundary conditions τ, by fixing $\sigma \upharpoonright_{\Lambda^{c}}=\tau \upharpoonright_{\Lambda^{c}}$ and setting the density proportional to $\exp \left(-\beta H_{\Lambda}^{\tau, \eta}(\sigma)\right)$ with $\beta=$ inverse temperature.

Quenched: Write $\langle\cdot\rangle_{\Lambda}^{\tau, \eta}=\langle\cdot\rangle^{\tau}$ for expectation in the above measure.
Averaged: We use \mathbb{P} and \mathbb{E} for averages over η.
Ground State: The case of zero temp. $(\beta=\infty)$ corresponds to a uniform distribution over energy minimizing configurations. We will talk of cases where there is a unique such configuration (in finite volume) and denote this configuration by $\sigma^{\Lambda, \eta, \tau}=\sigma^{\tau}$.

Understanding the ground state is usually the main challenge in understanding the low-temperature behaviour.
Random-Field models were first analyzed by Imry-Ma (1975):

Imry-Ma Phenomenon

Random-Field Spin Models do not have an ordered phase in low dimensions.

- $\mathrm{d}=2$: All such models are not ordered!
- $\underline{2 \leq d \leq 4}$: Random-Field Spin $O(n)$ models with $n \geq 2$ with $O(n)$-invariant η are disordered.
- $\underline{d \geq 3}$: RFIM, RFPM have low temp. and small λ ordered phase.

The last claim (regarding $d=3$) was challenged by other physicists, but eventually proved true by mathematicians Imbrde (1985) and Bricmont-Kupiainen (1988).

Heuristic: RFIM with $(+)$ boundary: Is the configuration of all $(+)$ more likely than all $(-)$?

$$
\Delta=H^{\eta}\left(s_{0}\right)-H^{\eta}\left(s_{1}\right) \approx \overbrace{-L^{d-1}}^{\text {bdry. conflict }}+\overbrace{\lambda \mathcal{N}\left(0, L^{d}\right)}^{\text {field }}
$$

$\Delta<0$ means that the boundary wins. Is $L^{d-1}>\lambda \mathcal{N}\left(0, L^{d}\right)$?
Yes, when $d \geq 3$; No, when $d=1$. In $d=2$ we have a constant $\left(\approx e^{-\frac{c}{\lambda^{2}}}\right)$ probability that the field wins, whence the field wins in some random sufficiently large box.

Heuristic in continuous-symmetry case:

the energetic cost $\Delta \approx \overbrace{-L^{d-2}}^{\text {bdry. conflict }}+\overbrace{\lambda \mathcal{N}\left(0, L^{d}\right)}^{\text {field }}$ is balanced in $d=4$.
Theorem. [Aizenman-Wehr 1989, version here from Dario-Harel-Peled 2021]

- RFIM, RFPM in $d=2$:

$$
\forall 0<\beta \leq \infty \cdot \mathbb{E}\left[\sup _{\tau_{1}, \tau_{2}}\left|\frac{1}{L^{2}} \sum_{v \in \Lambda_{L}}\left(\left\langle\mathbb{1}_{\sigma_{v}=j}\right\rangle_{\Lambda_{L}}^{\tau_{1}}-\left\langle\mathbb{1}_{\sigma_{v}=j}\right\rangle_{\Lambda_{L}}^{\tau_{2}}\right)\right|\right] \xrightarrow{L \rightarrow \infty} 0
$$

- RF Spin $O(n), n \geq 2,2 \leq d \leq 4, \eta$ rotationaly invariant:

$$
\mathbb{E}\left[\sup _{\tau_{1}}\left|\frac{1}{L^{2}} \sum_{v \in \Lambda_{L}}\left\langle\sigma_{v}\right\rangle_{\Lambda_{L}}^{\tau}\right|\right] \xrightarrow{L \rightarrow \infty} 0
$$

DHL showed that:

$$
\mathbb{E}\left[\sup _{\tau_{1}}\left|\frac{1}{L^{2}} \sum_{v \in \Lambda_{L}}\left\langle\sigma_{v}\right\rangle_{\Lambda_{L}}^{\tau}\right|\right] \leq \begin{cases}c / L^{\frac{1}{3}} & d=2 \\ c / L^{\frac{1}{5}} & d=3 \\ \frac{c}{\sqrt{\log \log L}} & d=4\end{cases}
$$

More is known for RFIM in $d=2$ Aizenman-Wehr: By monotonicity ($(+$) boundary conditions implies more (+)s), there is no need to average over Λ_{L} :

$$
m_{L}:=\mathbb{E}\left[\left\langle\sigma_{0}\right\rangle_{\Lambda_{L}}^{+}\right] \xrightarrow{L \rightarrow \infty} 0
$$

The rate of decay was refined until recently it was shown by Ding-Xia 2019 ($T=0$ and then $T>0$) and Aizenman-Harel-Peled, $m_{L} \leq C_{\lambda} e^{-c_{\lambda} L}$.

Ding-Wirth (2020): For $T>0$ and low temp., $d=2$, boundary conditions lose their effect at $L \approx e^{\lambda^{-\frac{4}{3}+o(1)}}$ as $\lambda \downarrow 0$. Conjecturally, similar behaviour holds for other models, e.g. RFPM:

Conjecture. $\forall 0<\beta \leq \infty, \lambda>0, d=2: \forall 1 \leq j \leq q$ in $R F P M$:

$$
\begin{equation*}
\mathbb{E}\left[\sup _{\tau_{1}, \tau_{2}}\left|\left\langle\sigma_{v}\right\rangle_{\Lambda_{L}}^{\tau_{1}}-\left\langle\sigma_{v}\right\rangle_{\Lambda_{L}}^{\tau_{2}}\right|\right] \xrightarrow{L \rightarrow \infty} 0 \tag{1}
\end{equation*}
$$

(1) is not known, even at $\beta=\infty$.

Conjecture. [Unique infinite volume ground state pair in $d=2$ spin glass] In $d=2$, there is a unique ground state pair in \mathbb{Z}^{2}. A finite-volume manifestation: $\forall 0<\beta \leq \infty$,

$$
\mathbb{E}\left[\sup _{\tau_{1}, \tau_{2}}\left|\left\langle\mathbb{1}_{\sigma_{0} \sigma_{e_{1}}=+1}\right\rangle_{\Lambda_{L}}^{\tau_{1}}-\left\langle\mathbb{1}_{\sigma_{0} \sigma_{e_{1}}=+1}\right\rangle_{\Lambda_{L}}^{\tau_{1}}\right|\right] \xrightarrow{L \rightarrow \infty} 0
$$

Only a spatially-averaged version is known (Aizenman-Wehr, Dario-Harel-Peled).

